THE WAY TO STATE OF DATE 1-26-62 SPECIFICATION NO. S-653 A TMC 1 05 14 COMPILED BY **DVM-4** WILE: TF PRODUCTION TESTING OF TMC MODEL

I. Introduction

APPROVED

- The DVM is a Diversity Visual Monitor. For test purposes, it may be divided into four sections:
 - 1. Power Supply
 - 2. Scope Circuit
 - 3. Sweep Circuit
 - 4. Marker and IF Section

The Power Supply

The positive voltage supply is conventional, supplying 250 voltage unregulated and 105 volts regulated.

The negative high voltage supply utilizes three selenium rectifiers as a voltage tripler and produces - 1500 volts.

C. The Scope Circuit

The scope circuit can be subdivided into the basic scope control circuit and two DC amplifiers which provide the necessary deflection voltages.

The basic scope circuit consists of voltage dividers which provide the necessary bias and operating voltages for focus, intensity (brightness) control and astigmatism (spot shape). Provision is made through a differentiating network, for blanking (visual extinction of the trace during the interval that the sawtooth, or time base generator is recycling).

In the horizontal DC amplifier (V107(12AT7)), dual triodes are used in which push-pull operation is accomplished by a voltage divider arrangement which causes the plate voltage of one triode to drive the grid of the other triode, thereby tending to drive the second plate negative as the first goes positive. The voltages on these plates are then applied to the CRT deflection plates, causing deflection of the spot. This feature is taken advantage of in the positioning control which varies the bias on one triode causing the potential of the plates to change, relative to each other and thereby positioning the trace on the screen.

The vertical DC Amplifier (V105(12AT7)) is similar to the horiz ntal.

The Sweep Circuit D.

The Sweep Circuit may be subdivided into the sawtooth generat r, and the sweep oscillator.

The sawtooth generator, (V104(884)) is a gas triode, operating as a free running relaxation oscillator. This oscillator generates a voltage which vari s linearly with time, producing a time reference which is applied t the horizontal scope axis, and to the sweep generator. The rate or frequency f

300

DATE 1-26-62 SH. 2 OF 14 COMPILED BY FRD

TMC

SPECIFICATION NO. 5-653 A

TITLE:

PRODUCTION TESTING OF TMC MODEL DVM-4

JOB

APPROVED

this time base is determined by the time constants, R124,R123 and C115, and is variable by R124. (Sweep Speed).

The sweep oscillator (V108B(1/2 6U8A) is a Hartley Circuit, frequency modulated by a reactance tube (V108A(1/2 6U8A). The reactance tube is operated in such a way that it is equivalent to an inductance which varies linearly with grid voltage. An appropriate fraction of the time - base voltage is applied to the grid, to cause the oscillator to sweep +5 or +1 kilocycle about its center frequency, in this case, 350 kc. This 350 kc is then applied to a mixer. The time base is synchronized so that the oscillator is at its center frequency (350 kc) at the same time that the trace has traversed half the width of the CRT screen. Since the trace is now synchronized with the sweep, a horizontal displacement on the scope corresponds to a frequency and the scope may be calibrated as such.

Marker and IF Section E.

The input signal (250 kc) is applied to V101 (6BE6) and is Heterodyned with the sweep oscillator frequency of 350 kc. This produces a frequency modulated voltage difference of 100 kc in the plate circuit of V101. 100 kc voltage difference is then applied to a crystal filter, FL-100, whose high-Q characteristic permits passage of a small band of frequencies (100 kc region), attenuating all other frequencies. V102(6AG5) then amplifies the filtered frequency to the detector circuit V103A(1/2-12AX7) where resultant rectified positive portion of applied voltage or positive pulse is fed to the pulse amplifier. V103B(1/2-12AX7). The AVC network CR105(1N39B) and CR104(1N482A)acts as a peak envelope detector which functions to detect modulation and ringing converting this to an AVC gate which is applied to the detector, effectively limiting the intermodulation.

The output pulse of V103B is coupled to the vertical amplifier, V105(12AT7) and applied to the vertical deflection plates of the CRT. The Diode Circuit, CR-100(1N-39B) acts as a DC restorer. The net result is that a vertical signal pulse appears on the monitor scope screen when a 100 kc signal difference is obtained at the output of the DVM mixer circuit.

Since the screen is calibrated in frequency, the position of this vertical pulse corresponds to the input frequency. At 250 kc, the pulse should be in the exact center position, or zero reference point. An input signal of 252 kc mixing with 352 kc will cause a 2 kc displacement of the pulse to the right of zero reference. This displacement to the right is due to the fact that the 352 kc sweep oscillator frequency is generated at a later time than 350 kc. Similarly, the vertical pulse position will be somewhere to the left of zero point for an input signal less than 250 kc.

In order to insure correct calibration, a 250 kc calibration oscillator or marker is incorporated in the DVM as a reference standard. For calibration, the incoming signals are removed from the monitor scope screen by S100

DATE 1-26-62 TMC 3 of 14 SH. . COMPILED BY TITLE:

SPECIFICATION NO. S-653 A

PRODUCTION TESTING OF TMC MODEL DVM- 4

FRD

JOB

APPROVED

(calibrate), while V100 (6AG5) is activated. V100 is a crystal contr lled oscillator (250kc). Zero reference on the screen can now be established by adjusting R163 (Cal-Zero set). This control adjusts the sweep oscillator V108 center frequency to 350 kc. The magnitude of the reference signal can be adjusted by C100.

The DVM-4 provides three inputs for 250 kc IF from diversity receivers (minimum signal input 0.1 volt), two of which can be fed out again t an IF converter unit. a diversity combining unit, etc.

Test Equipment Required II.

- A. AC VTVM(H.P. Model 410)
- B. RF Voltmeter (Ballantine Laboratories Model 314 or Equivalent)
- RF Signal Generator (Measurements Model 82 or Equivalent)
- Oscilloscope (DuMont) Model 304 or Equivalent)
- 251.000 Kc * E. Crystals · 249.000 Kc 255.000 Kc 245,000 Kc

NOTE: Unless otherwise specified, all readings +10%.

III. Preliminary

- Inspect unit for mechanical imperfections and for proper placement of components.
- 2. Inspect for obvious wiring errors.
- 3. Check for B+ shorts with ohmmeter.

Test of Power Supply IV.

- 1. Check output Voltages
 - a) B+, C135 pin $5, +255 \vee$.
 - b) V110. Pin 5,+105 volts
 - c) Cl33, minus 1500 volts
 - d) vary R152 and R137, voltage "b" above should remain constant at +105 volts.
- An RF Signal Generator may be used in conjunction with a frequency meter or counter (Berkeley model 5558 or equivalent) instead of the crystals (E)

DATE 1-26-62 SH. 4 OF 14 COMPILED BY

TE

TMC

SPECIFICATION NO. S -653 A

TITLE:

PRODUCTION TESTING OF TMC MODEL DVM-4

80L

APPROVED

V. Test of Scope Circuit

- 1. Check scope system, lock scope in place so that trace is horizontal.
- Vary R147, Pin 4, CRT varies from -810 to -960 volts.
 Vary R140, Pin 8, CRT varies from 0 to +255 volts.
 Set both for sharpest trace, with least distortion on ends.
- 3. Vary R152, Pin 3, V107 varies from 3 to 4.6 volts Vary R137, Pin 3, V105 varies from 4 to 6.3 volts Set R131 and R156 to zero, center spot on baseline with R152 and R137, set R131 approximately 35% maximum and R156 approximately 50%.
- 4. Vary R145, voltage at wiper varies from -1390 to -1340 volts.
- 5. Check waveform at Pin 3, CRT, observe pulses, also observe for blanking on CRT screen.

VI. Test of Sweep Circuit

Sawtooth Oscillator (all voltage and frequency readings on scope)
 Output should be 12 volts of the waveform shown:

(output from C114)

Frequency should vary from about 35 to 50 cycles per second as R124 is varied.

Voltage at pin 7 of V107, should be of the same waveform and vary from 0 to 14 volts as R156 is varied. Set to approximately 1.25 volts just before waveform becomes nonlinear, that is, changes from to

Voltage at wiper of R160 should vary from ½ to 1.7 volts, as R160 is varied. Set for about 1.2 volts (Waveform:

* Front Panel Controls

R147 - Focus R131 - V Gain R140 - Astig R156 - H Gain

R152 - H. Pos R163 - Cent r Freq.

R137 - V. Pos

DATE 1-26-62 SH. 5 OF 14

FRD

TMC SPECIFICATION NO. S-653 A

TITLE:

PRODUCTION TESTING OF TMC MODEL DVM-4

80L

APPROVED

Voltage at wiper of R161 should vary from 0 to 1/2 as R161 is

varied. Set for about 1/4 volt (Waveform:

).

- 2. Sweep Oscillator
- 1. Check DC voltage on pin 7, V108, it should vary approximately 0.6 volts as R163 is varied (From 3.3 to 3.9V)
- 2. Output (Pin 1, V101) of sweep generator should be a 1.8 volt sine wave (approximately).

3. Alignment

- a) Set S102 to +1 kc, R163 to "Center", with 250.000 kc crystal in XY100 & W/S100 depressed, center marker with T102. Bottom broad tuning Top vernier.
- b) By adjusting T102, and switching between the +1 and +5 kc ranges, find the point (off center) where the marker remains in the same position for both ranges. Lock T102 at this point and center marker with R152
- c) Set S102 to +1 kc with 249.000 kc crystal in XY100. Adjust R161 until marker lines up with left 1 inch graduation on screen. Check with 251.000 kc crystal on right side.
- d) Set S102 to ±5 kc with 245.000 kc xtal in XY100. Adjust R160 until marker lines up with left 1 inch graduation. Check on right with 255.000 kc xtal on right. (On high end check marker; should fall less than 10% short).
 - e) Lock R160 & R161.

NOTE: Steps C & D above may be accomplished by means of an accurately calibrated signal source, fed into any input.

VII. Test and Alignment of Marker and IF Section (IF = 100 kc)

1. Marker - check output (R107) (S100 in) should vary from .0075 to .025 volts RF as C100 is varied (use non-metallic tool). Leave C100 at minimum.

DATE 1-26-62 SH. 6 F14		TMC	SPEC	FICATION	NO.	S -653	A
COMPILED BY	TITLE:	PRODUCTION	TESTING OF	TMC MODEL DVM -4		J08	

APPROVED

- 2. Feed in a 250 kc 1.0 wolt unmodulated signal. Check inputs
 1,2 (J101 and 104, J102 and 105) against S101 position.
- 3. Align T100 for maximum gain, (as indicated by vertical height on screen). Note, there are two slugs to adjust, above and below chassis.
- 4. Set R106 to maximum. Adjust R131 for full height on screen (+1 kc range). Adjust C100 (non-metallic tool) so that marker attains full height on screen.
- 5. Trace signal. Voltages should read approximately as per Chart 1, (±10%)
- 6. Check AVC system. Measure voltage at C140 (black terminal of T100). Compare with input voltage. Results should be similar to Chart 2, as pictured in Figure 1. Reject if voltage measurements are consistantly lower than those of chart 2.

DATE 1-2 SH. 7	_of 1				TM	С		SPI	ECI	FI	CA	ΓΙΟ	N	NC).	S -65	3 A
COMPIL T. F			TITLE	PI	RODUC	TI ON	TEST	ING	OF 7	IMC 1	MODE	L DVI	<u>1-4</u>			J08	
APPROVE	Ð																
T 2	88 (DC)	AV2, AC VIVM or Equivalent)	AVC Volts		. 56	-,56	1.84	96*-	-1.14	-1.26	-1.42	-1.6	-2.0	-2.5	-3.5	-4.54	
CHART	AVC VOLTAGE (DC)	Mode 1	also rigure it Volts		0	0.014	0.1	0.12	0.14	0.16	0.18	0.20	0.25	0.30	0.40	0.50	
	(Ref: Ballantine Labs Model 314, RF Voltmeter or Equivalent)	VOLÍTAGE	+5 KC	0.10	0.01	1.30	0.03	0.20	0.26	0.14	0.13	10.0	3.0	0,35			
CHART 1	SIGNAL VOLTAGES (RF)	abs Model 314, RF Vol	TOA	+1 KC	0.10	0.01	06.0	0.03	0.45	0.64	0.21	0.20	15.0	0.0	9.55		
	SES	(Ref: Ballantine La	TNTOG		Input	V101 Pin 7	V101 Pin 5	V102 Pin 1	V102 Pin 5	V103 Pin·6	V103 Pin 8	V103 Pin 2	V103 Pfn 1	CR100	V105 Pfn 7		

DATE 1-26-62

TITLE:

TMC SPECIFICATION NO. S-653 A

PRODUCTION TEST OF MODEL DVM -4

JOB

APPROVED

YIII

Chart #4, D.C. Voltages

INPUT:

0.1 Volt Unmodulated Signal

VOLTAGE:

Maintained Constant at 115 Volts AC. (important)

INSTRUMENTS:

VIVM - Heath V-7A, with RF Probe or equivalent

Oscilloscope - Any scope which can be accurately

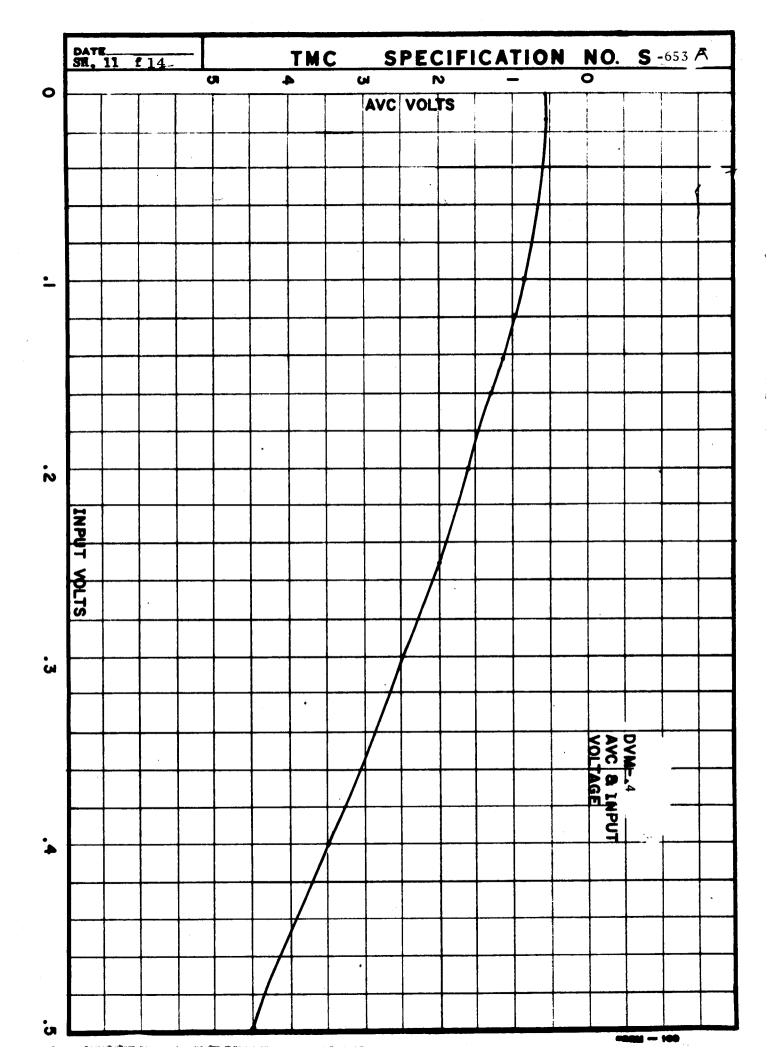
calibrated to read peak-to-peak voltages.

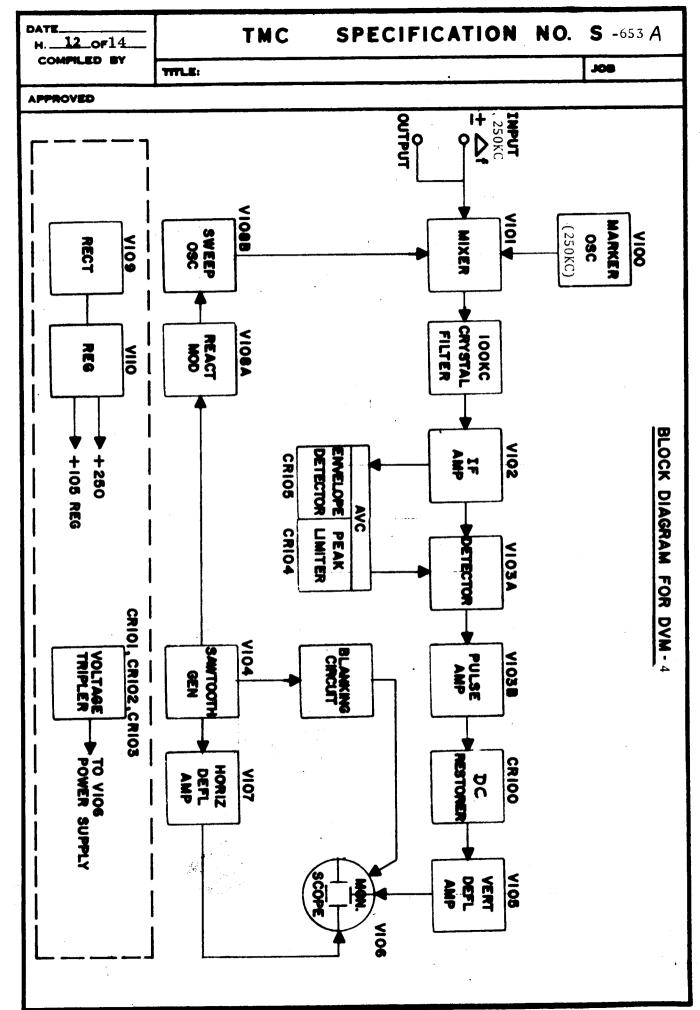
HOTE:

Unless otherwise specified, a tolerance of ± 10%

should be allowed on all readings.

Ture	PIN	Voltage	REMARKS
▼10 0	1	-9 .5	Push S100 Voltage depends on activity of XTAL Will change if XTAL changed
6AG5	2	0	
Marker	3	6.3 VAC	
Osc.	4	0	
	5	64	**
	6	44	.**
	7	0	
V 101	1	-5	
6BE6	2	+1.2	
Mixer	3	6.3AC	
	4	0	
	5	200	
Ì	6	62	
	7	0	
V102 6AG5 1.F.	1 2 3	0 N.C 6.3AC	Internally connected to 7
	4	0	
	5	210	
	6	130	
	7	1.20	
V103	1	135 (117→90)*	Disable AVC. (See note 1)
12AX7	2	.1(0.7 -> 1.3)*	Voltage varies with change
Detector	3	1.1 (1.3→1.5)*	in input voltage, from
Amplifier	4,5	6.3	0 to 0.1 volts.
	6)	$\int_{-\frac{1}{2}}$ t 5V, as in	put variés
	75	0. with AMC Dis	abled
	8	.1 (0.7=1.3)	
1	9		


DATE1-26-62 SH9OF14		TMC SPECI	FICATION NO. S -653 A					
COMPILED BY FRD	TYTLE:	THILE: PRODUCTION TEST OF MODEL DAM =4. JOB						
APPROVED								
V104	1	NC						
884	2	0-						
Sawtooth	3	33	Peak-to-peak value (sawtooth)					
Oscilator	4	NC						
	5	O, VDC. 6VAC	Spike, (3 volts in magnitude as seen on oscilloscope.					
	6	NC						
	7	6.3AC						
	8	5	DC Bias level, (plus (\frac{1}{2} volt spike, visible on scope)					
V105	1	150 (110=160)**	Vary V-POS (See note 2)					
12AT7	2	1.9 (1.7-2.2)**	Vary V-Gain					
Vertical	3	4.9 (40-5.8)**	Vary V-POS					
AMP	4,5	6,3AC						
	6	110						
	7	-0.33 (0to-4.3)	*Vary V~Gain					
	8 9	+0.2 0						
V106 CRT	1-12 2 3		1 and 12 (Floating to Ground)) Vary intensity					
	4	-840 (760-900)**						
	5	NC	vary rocus					
	6	+96						
	7	+148						
	8	1	Vary Astigmatism					
	9	+100	vary Astramatism					
	10	+96						
	11	NC						
V10 7	1	96 (87=117)**	V W 200					
12AT7	2	2,5(2.3=2.7)**	Vary H-POS Vary H-POS					
H rizontal	3	4.0(3.0-4.5)**	Vary H-POS					
AMP	4,5	6.3AC	vary meros					
_	6	99						
	7		*Vary H-Gain peak-to-peak value					
·		•	of an AC the sawtooth					
	8 9	1.6						
	7	0						
V108	1	99	Slightly less thanV110(regulated)					
6U8-A	2	0						
Reactance	3	100	n					
Oscillator	4	6.3AC						
	5	0						
	6	98	Slightly less than Pin 3(regulated					
	7	3(2.7 to 3.4)**						
	8	0 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Control					
	9	3.7(-3 to -4. 9 **	•					


DATE		TMC	SPECIFICATION	NO.	S -653 A
COMPILED BY	TITLE:	PRODUCTA	ON TERM OF MODEL DAW 4		JOB
APPROVED					

V109 5Y3=G Rectifier	1,3,5,7 2 4 6 8	NC 267 340 AC 340 AC 267	Does not vary if line is kept constant at 115
V110	1,5	105	Stays constant within ± 1% (Firing voltage varies with individual tube)
OB2	2,4,7	0	
V ltage Reg.	3,6	NC	

*Given value is the operational level, with 0.1 volts input to DVM. Values in parentheses indicate variations in level with varied input signal (0 to 0.1V) and with AVC disabled (ground)

**Value given is for reference only, may vary from unit to unit. The range of value given in parentheses indicates the values which should be observed as the indicated control is varied.

PATE 8/2	1/62				
SHEET 13	or14	TMC SPECI	FICATION NO	O. S ₋₆₅₃	
COMPLED	CHECKED	TITLE: PRODUC	TION TESTING OF	TMC MODEL DVM-	-4
APPR	OVED				
		THE TECHNICAL MATE MAMARONECK,		ī	
		DVM-4 TEST DAT	A SHEET		
SI	ERIAL NO.				
	. PRELIMINA				
	a. B+ sho	rt		*	
2.	. POWER SUP	PLY			
	a. B+ (25	5V)	Output	volts	
	b. B+ (Re	g) (105V)	Output	volts	
			Regulation_	S	
	c. High V	oltage (-1500V)	Output	volts	
3,	. SCOPE				
	a. Visu	al-Align base line			
	b. Posi	tion			
		orizontal (A) vary		07 varies	
		ertical (B) vary R romto		varies lts	
	c. H. Gai	n		OK	
	d. Vary R	145, voltage at wi	per varies from_	· · · · · · · · · · · · · · · · · · ·	
	to	volts			
	e. Pictur	е	1		
	1. Foc	us (A) vary R147,	Pin 4, CRT vari€	es from	
	to_	volts.			
	2. Ast	igmatism (B) vary	R140, Pin 8, CRT	vari s from_	
	to	volts			

DATE 8/21/62 SHEET 14 OF 14	TMC SPECIFIC	CATION NO. S -653	A
FRD	TITLE: PRODUCTION T	TESTING OF TMC MODEL DVM-4	
COMPILED CHECKE	KAR PICKNOW	EMSKUNG OF IMC	
APPROVED			
3. Ti	ntensity	OK	
	lanking _	OK	
4. SWEEP	·		
İ	aveform .		
	orizontal Gain (o-1.4V)		
з. с	alibration - Zero Set	volts	
4. V	(Swing-0.6V) 108 Output		
а	. Shape		
l l	o. Volts (1.8V)	volts	
5. ALIGNMENT			
1. 3	250 KC Center		
2. 4	1 KC		
3. 4	_ 5 KC		
4. I			
	LOO KC I.F.		
•	a. Peak		
6. INPUTS		hi - 7	
		tion 2	
	Pogi	tion 3	
	3Posi	tion 3	
7. VERTICAL 1. Gain			
2. Align	Height,		
3. Marker			
a. Ali	gn Height		
	DATE		

TESTER

REV	ISIO	N SH	HEET	THE TECHNICAL MATERIEL GORP. MAMARONECK NEW YORK	VM- 4	
MOD	EL_			PROJECT NO		
DATE	REV.	PAGE	EMN#	DESCRIPTION	СНК.	APP.
8/21/	62 A	13.14	7124	Add Test Data Sheets		16
p, , -						
		_				
						·
,						
				Market Property and the second		
				<u> </u>		
	<u> </u>					
			<u> </u>			
	<u> </u>					
	ļ					
					,	
					<u> </u>	
	· · · · · · · · · · · · · · · · · · ·					
			ļ			<u> </u>
]	1				